歯 の 噛み 合わせ 治し 方 割り箸

歯 の 噛み 合わせ 治し 方 割り箸

高速・高精度渦電流式デジタル変位センサ (Gp-X) | Panasonic | Misumi-Vona【ミスミ】

渦電流プローブのスポットサイズ 渦電流センサーは、プローブの端を完全に囲む磁場を使用します。 これにより、比較的大きな検出フィールドが作成され、スポットサイズがプローブの検出コイル直径の約4倍になります(図1)。 渦電流センサーの場合、検知範囲と検知コイルの直径の比は3:500です。 つまり、範囲のすべての単位で、コイルの直径は1500倍大きくなければなりません。 この場合、同じ1. 5µmの検知範囲で必要なのは、直径XNUMXµm(XNUMXmm)の渦電流センサーだけです。 検知技術を選択するときは、目標サイズを考慮してください。 ターゲットが小さい場合、静電容量センシングが必要になる場合があります。 ターゲットをセンサーのスポットサイズよりも小さくする必要がある場合は、固有の測定誤差を特別なキャリブレーションで補正できる場合があります。 センシング技術 静電容量センサーと渦電流センサーは、さまざまな手法を使用してターゲットの位置を決定します。 精密変位測定に使用される静電容量センサーは、通常500 kHz〜1MHzの高周波電界を使用します。 電界は、検出素子の表面から放出されます。 検出フィールドをターゲットに集中させるために、ガードリングは、検出要素のフィールドをターゲット以外のすべてから分離する、別個の同一の電界を作成します(図5)。 図5.

  1. 渦電流式変位センサ
  2. 渦電流式変位センサ 価格

渦電流式変位センサ

一般センサーTechNote LT05-0011 著作権©2009 Lion Precision。 はじめに 静電容量技術と渦電流技術を使用した非接触センサーは、それぞれさまざまなアプリケーションの長所と短所のユニークな組み合わせを表しています。 このXNUMXつの技術の長所を比較することで、アプリケーションに最適な技術を選択できます。 比較表 以下の詳細を含むクイックリファレンス。 •• 最良の選択、 • 機能選択、 – オプションではない 因子 静電容量方式 渦電流 汚れた環境 – •• 小さなターゲット • 広い範囲 薄い素材 素材の多様性 複数のプローブ プローブの取り付けが簡単 ビデオ解像度/フレームレート 応答周波数 コスト センサー構造 図1. 静電容量センサーと渦電流センサーの比較| ライオンプレシジョン. 容量性プローブの構造 静電容量センサーと渦電流センサーの違いを理解するには、それらがどのように構成されているかを見ることから始めます。 静電容量式プローブの中心には検出素子があります。 このステンレス鋼片は、ターゲットまでの距離を感知するために使用される電界を生成します。 絶縁層によって検出素子から分離されているのは、同じくステンレス鋼製のガードリングです。 ガードリングは検出素子を囲み、電界をターゲットに向けて集束します。 いくつかの電子部品が検出素子とガードリングに接続されています。 これらの内部アセンブリはすべて、絶縁層で囲まれ、ステンレススチールハウジングに入れられています。 ハウジングは、ケーブルの接地シールドに接続されています(図1)。 図2. 渦電流プローブの構造 渦電流プローブの主要な機能部品は、検知コイルです。 これは、プローブの端近くのワイヤのコイルです。 交流電流がコイルに流れ、交流磁場が発生します。 このフィールドは、ターゲットまでの距離を検知するために使用されます。 コイルは、プラスチックとエポキシでカプセル化され、ステンレス鋼のハウジングに取り付けられています。 渦電流センサーの磁場は、簡単に焦点を合わせられないため 静電容量センサーの電界では、エポキシで覆われたコイルが鋼製のハウジングから伸びており、すべての検知フィールドがターゲットに係合します(図2)。 スポットサイズ、ターゲットサイズ、および範囲 図3. 容量性プローブのスポットサイズ 非接触センサーのプローブの検知フィールドは、特定の領域でターゲットに作用します。 この領域のサイズは、スポットサイズと呼ばれます。 ターゲットはスポットサイズよりも大きくする必要があります。そうしないと、特別なキャリブレーションが必要になります。スポットサイズは常にプローブの直径に比例します。 プローブの直径とスポットサイズの比率は、静電容量センサーと渦電流センサーで大きく異なります。 これらの異なるスポットサイズは、異なる最小ターゲットサイズになります。 静電容量センサーは、検知に電界を使用します。 このフィールドは、プローブ上のガードリングによって集束され、検出素子の直径よりもスポットサイズが約30%大きくなります(図3)。 検出範囲と検出素子の直径の一般的な比率は1:8です。 これは、範囲のすべての単位で、検出素子の直径が500倍大きくなければならないことを意味します。 たとえば、4000µmの検出範囲では、4µm(XNUMXmm)の検出素子直径が必要です。 この比率は一般的なキャリブレーション用です。 高解像度および拡張範囲のキャリブレーションは、この比率を変更します。 図4.

渦電流式変位センサ 価格

一般的なセンサーアプリケーションノートLA05-0060 著作権©2013 Lion Precision。 概要 実質的にすべての静電容量および渦電流センサーアプリケーションは、基本的にオブジェクトの変位(位置変化)の測定値です。 このアプリケーションノートでは、このような測定の詳細と、マイクロおよびナノ変位アプリケーションで信頼性の高い測定を行うために必要なものについて詳しく説明します。 静電容量センサーはクリーンな環境で動作し、最高の精度を提供します。 渦電流センサーは、濡れた汚れた環境で機能します。 プローブを対象物の近くに設置でき、総変位が小さい場合、レーザー干渉計の経済的な代替品となります。 非接触線形変位センサーによる線形変位および位置測定 線形変位測定 ここでは、オブジェクトの位置変化の測定を指します。 静電容量センサーと渦電流センサーを使用した導電性物体の線形高解像度非接触変位測定は、特にこのアプリケーションノートのトピックです。 静電容量センサーは、非導電性の物体も測定できます。 静電容量式変位センサーを使用した非導電性物体の測定に関する説明は、 静電容量式センサーの動作理論TechNote(LT03-0020). 関連する用語と概念 容量性変位センサーと渦電流変位センサーの高分解能、短距離特性のため、これは時々 微小変位測定 そしてセンサーとして 微小変位センサー or 微小変位トランスデューサ 。 に設定されたセンサー 線形変位測定 時々呼ばれます 変位計 or 変位計.

渦電流式変位センサの構成例 図4.